Chemokine CXCL1-Mediated Neutrophil Trafficking in the Lung: Role of CXCR2 Activation.

نویسندگان

  • Kirti V Sawant
  • Renling Xu
  • Robert Cox
  • Hal Hawkins
  • Elena Sbrana
  • Deepthi Kolli
  • Roberto P Garofalo
  • Krishna Rajarathnam
چکیده

The chemokine CXCL1 and its receptor CXCR2 play a crucial role in host immune response by recruiting and activating neutrophils for microbial killing at the tissue site. Dysregulation in this process has been implicated in collateral tissue damage causing disease. CXCL1 reversibly exists as monomers and dimers, and it has been proposed that distinct monomer and dimer activities and the monomer-dimer equilibrium regulate the neutrophil function. However, the molecular mechanisms linking the CXCL1/CXCR2 axis and the neutrophil 'beneficial' and 'destructive' phenotypes are not known. In this study, we characterized neutrophil trafficking and its consequence in the mouse lung by the CXCL1 wild type (WT), which exists as monomers and dimers, and by a nondissociating dimer. Whereas the WT, compared to the dimer, was more active at low doses, both the WT and the dimer elicited a large neutrophil efflux at high doses. Importantly, robust neutrophil recruitment elicited by the WT or dimer was not detrimental to lung tissue integrity and, further, could not be correlated to surface CXCR2 levels. We conclude that the CXCL1 monomer-dimer distribution and receptor interactions are highly coupled and regulate neutrophil trafficking and that injury in the context of disease is a consequence of inappropriate CXCR2 activation at the target tissue and not due to mechanical forces exerted by neutrophils during recruitment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow.

Neutrophils are a major component of the innate immune response. Their homeostasis is maintained, in part, by the regulated release of neutrophils from the bone marrow. Constitutive expression of the chemokine CXCL12 by bone marrow stromal cells provides a key retention signal for neutrophils in the bone marrow through activation of its receptor, CXCR4. Attenuation of CXCR4 signaling leads to e...

متن کامل

Chemokine CXCL1 mediated neutrophil recruitment: Role of glycosaminoglycan interactions

The chemokine CXCL1/MGSA plays a pivotal role in the host immune response by recruiting and activating neutrophils for microbial killing at the tissue site. CXCL1 exists reversibly as monomers and dimers, and mediates its function by binding glycosaminoglycans (GAG) and CXCR2 receptor. We recently showed that both monomers and dimers are potent CXCR2 agonists, the dimer is the high-affinity GAG...

متن کامل

Critical role for CXCR2 and CXCR2 ligands during the pathogenesis of ventilator-induced lung injury.

Mortality related to adult respiratory distress syndrome (ARDS) ranges from 35% to 65%. Lung-protective ventilator strategies can reduce mortality during ARDS. The protective strategies limit tidal volumes and peak pressures while maximizing positive end-expiratory pressure. The efficacy of this approach is due to a reduction of shear-stress of the lung and release of inflammatory mediators. Ve...

متن کامل

The chemokine receptors CXCR1 and CXCR2 couple to distinct G protein-coupled receptor kinases to mediate and regulate leukocyte functions.

The chemokine receptors, CXCR1 and CXCR2, couple to Gαi to induce leukocyte recruitment and activation at sites of inflammation. Upon activation by CXCL8, these receptors become phosphorylated, desensitized, and internalized. In this study, we investigated the role of different G protein-coupled receptor kinases (GRKs) in CXCR1- and CXCR2-mediated cellular functions. To that end, short hairpin ...

متن کامل

Neutrophil Chemotaxis Caused by Chronic Obstructive Pulmonary Disease Alveolar Macrophages: The Role of CXCL8 and the Receptors CXCR1/CXCR2 s

Alveolar macrophages produce neutrophil chemoattractants; this cellular cross-talk contributes to neutrophilic airway inflammation in chronic obstructive pulmonary disease (COPD). We have investigated the chemotaxis cross-talk mechanisms between these cells using COPD alveolar macrophages. Using conditioned media from stimulated COPD alveolar macrophages, we investigated the relative contributi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of innate immunity

دوره 7 6  شماره 

صفحات  -

تاریخ انتشار 2015